[tex]\it \sqrt{2x^2+x+1}=2x^2+x-1\\ \\ O\ condi\c{\it t}ie\ de\ existen\c{\it t}\breve{a}\ este:\\ \\ 2x^2+x-1>0 \Rightarrow\ 2x^2+x>1\ \ \ \ \ (*) \\ \\ Vom\ nota\ 2x^2+x=t,\ t>1\ \ \ (*)\ iar\ ecua\c{\it t}ia\ devine:\\ \\ \sqrt{t+1}=t-1\ \Rightarrow\ (\sqrt{t+1})^2=(t-1)^2\ \Rightarrow t+1 =t^2-2t+1 \Rightarrow \\ \\ \\ \Rightarrow 0=t^2-2t+1-t-1\ \Rightarrow\ t^2-3t=0\ \Rightarrow\ t(t-3)=0\ \Rightarrow[/tex]
[tex]\it \Rightarrow \begin{cases}\it t=0\ (nu\ convine,\ deoarece\ t>1\ \ \ \ (*)\ )\\ \\ t-3=0\ \Rightarrow\ t=3\end{cases}[/tex]
Revenim asupra notației:
[tex]\it\ t=3 \Rightarrow 2x^2+x=3 \Rightarrow 2x^2+x-3=0 \Rightarrow\ x=1\ sau\ x=-\dfrac{3}{2}\\ \\ S=\{-\dfrac{3}{2},\ \ 1\}[/tex]