Răspuns :
Salut,
Pentru x ∈ (π, 2π), avem că de fapt x aparține cadranelor III și IV ale cercului trigonometric.
Cadranul III este pentru x ∈ (π, 3π/2), iar cadranul IV este pentru x ∈ (3π/2, 2π), dacă reunești intervalele (π, 3π/2] și (3π/2, 2π), atunci obții exact (π, 2π).
În cadranele III și IV, semnul funcției sinus este negativ, deci vom admite doar soluția negativă.
Folosim formula fundamentală a trigonometriei:
[tex]\sin^2x+\cos^2x=1\Rightarrow\sin^2x=1-\cos^2x=1-\left(-\dfrac{\sqrt2}{2}\right)^2=1-\dfrac{2}4=1-\dfrac{1}2=\dfrac{1}2.\\\\Deci\ sinx=\pm\sqrt{\dfrac{1}2}=\pm\dfrac{1}{\sqrt2}=\pm\dfrac{\sqrt2}2.\ Solu\c{t}ia\ admis\breve{a}\ este\ sinx=-\dfrac{\sqrt2}2.[/tex]
Cum sinx și cosx au ambele semn negativ, unghiul x se află în cadranul III.
Ai înțeles rezolvarea ?
Green eyes.
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că ați găsit conținutul oferit util și inspirațional. Dacă aveți întrebări suplimentare sau doriți asistență, vă încurajăm să ne contactați. Ne-ar face plăcere să reveniți și nu uitați să ne adăugați în lista dumneavoastră de favorite!