Răspuns :
Răspuns:
Explicație pas cu pas:
piramidă patrulateră VABCD regulată cu VA = AB =12 cm. Punctul M este situat pe muchia CV astfel incat suma BM + DM are valoare minimă.
Rezultă VABCD tetraedu regulat. Fețele sunt triunghiuri regulate, deci BM=DM si suma BM + DM va fi minimă pentru BM si DM perpendiculare pe VC, deci M este mijlocul muchiei VC.
b) ΔBMD isoscel cu baza BD. O este centrul pătratului ABCD, deci MO este mediană și deci AO=CO. În ΔACV MO este linie mijlociem deci MO║VA, și deoarece MO⊂(BMD), ⇒VA║(BMD).
c) A∈VA, dar VA║(BMD), deci d(A,(BMD)) este egală cu distanța de la orice punct al dreptei VA la (BMD).
BD⊥AC și BD⊥MO, deci BD⊥(ACV), deci d(A,(BMD)) =d(A,MO)= d(V,MO)=VM=6, deoarece VC⊥(BMD), iar VM=(1/2)·VC.
p.s. VC⊥MO, VC⊥BM, VC⊥DM, ⇒VC⊥(BMD).

Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că ați găsit conținutul oferit util și inspirațional. Dacă aveți întrebări suplimentare sau doriți asistență, vă încurajăm să ne contactați. Ne-ar face plăcere să reveniți și nu uitați să ne adăugați în lista dumneavoastră de favorite!