Răspuns:
Explicație pas cu pas:
ΔABC echilateral, Piramida regulata, deci fetele laterale triunghiuri isoscele congruenta, VA=6√2=VB=VC. Inaltimea piramidei se proiecteaza in centrul bazei, fie VO inaltimea piramidei, O centrul bazei. M mijlocul laturii BC, ∡MVA=90°.
b) Fie MB=x, ⇒AB=2x. Din ΔMBV, dreptunghic in M, ⇒ MV²=VB²-x²
Din ΔABM, ⇒AM²=(2x)²-x²=3x².
Din ΔAMV, ⇒VA²+VM²=AM² ⇒(6√2)²+(6√2)²-x²=3x² ⇒4x²=6²·4 ⇒x²=6², deci x=6=BM, deci AB=2·6=12cm.
c) AM²=3·6², deci AM=6√3. ⇒AO=(2/3)·6√3=4√3.
Din ΔAVO, ⇒VO²=VA²-AO²=(6√2)²-(4√3)²=72-48=24=4·6, deci VO=2√6.
Atunci Volum=(1/3)·Ab·h=(1/3)·AB²·(√3/4)·2√6=(1/3)·12²·(√3/4)·2√6=24√18= 24·3√2=72√2 cm³.
d) (VAM)∩(VAB)=VA. VA⊥VM. In ΔVAB, VA²+VB²=AB². Intradevar, (6√2)²+(6√2)²=6²·2+6²·2=6²·4=6²·2²=(12)²=AB². ⇒ΔVAB dreptunghic in V.
Atunci VA⊥(VBC), deci ∡((VAB).(VAM))=∡(VB,VM).
ΔBCV dreptunghic isoscel cu baza BC, in care VM este mediana, deci VM=(1/2)·BC=6. VM este si bisectoare, deci ∡BVM=45°= ∡((VAB).(VAM)).
e) d(M,(VAB))=???
Fie MN linie mijlocie in ΔABC, N∈AC, deci MN║AB. Atunci distanta de la orice punct al dreptei MN este egal departat de (VAB). Trasam mediana CP, P∈AB. Fie MN∩CP={D}. O∈CP.
AB⊥CP, AB⊥VP, deci AB⊥(VCP). Aria(ΔVPD)=(1/2)·DP·VO
Din Thales ⇒CD=DP=(1/2)·AM=3√3. Deci Aria(ΔVPD)=(1/2)·3√3·2√6=3√18=6√2 cm². Din alt mod de calcul, ⇒Aria(ΔVPD)=(1/2)·VP·h, unde h=d(D,VP), deci Aria(ΔVPD)=(1/2)·6·h=3h, ⇒3h=6√2, deci h=2√2 cm = d(M,(VAB)).