Răspuns :
Răspuns:
Prima teoremă a înălțimii
Într-un triunghi dreptunghic, lungimea înălțimii corespunzătoare ipotenuzei este media geometrică a lungimilor proiecțiilor catetelor pe ipotenuză.
CD^{2} = AD * BD
unde CD este înălțimea corespunzatoare ipotenuzei, iar AD și BD sunt proeicțiile catetelor pe ipotenuză
A doua teoremă a înălțimii
Produsul înălțimii corespunzătoare ipotenuzei cu ipotenuza este egal cu produsul catetelor, adică dacă ABC este un triunghi dreptunghic cu C=90° , iar CD este perpendiculara pe AB. Există relația:
CD * AB = AC * BC
Teorema lui Pitagora
Intr-un triunghi dreptunghic patratul lungimii ipotenuzei este suma patratelor catetelor.
BC^{2}=AB^{2}+AC^{2}
Reciproca
Dacă într-un triunghi pătratul lungimii unei laturi este egal cu suma pătratelor lungimilor celorlalte două laturi, atunci triunghiul este dreptunghic.
BC² = AB² + AC² => m(<BAC)=90°.
Notiuni de trigonometrie nu stiu :/
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Limba română. Sperăm că ați găsit conținutul oferit util și inspirațional. Dacă aveți întrebări suplimentare sau doriți asistență, vă încurajăm să ne contactați. Ne-ar face plăcere să reveniți și nu uitați să ne adăugați în lista dumneavoastră de favorite!