Răspuns :
Bună!
Răspunsuri:
- A={1450, 1455}
- B={170, 172, 174, 176, 178}
- C={9030, 9033, 9036, 9039}
Explicații:
a) A={x∈N| x=145a și 5|x}
x=145a și 5|x ⇒ a=0 sau 5 (conform criteriului de divizibilitate cu 5)
A={1450, 1455}
b) B={x∈N| x=17a și 2|x}
x=17a și 2|x ⇒ a=0, 2, 4, 6, 8 (conform criteriului de divizibilitate cu 2)
B={170, 172, 174, 176, 178}
c) C={x∈N| x=903b și 3|x}
x=903b și 3|x ⇒ (conform criteriului de divizibilitate cu 3 ⇒ ca un nr să fie divizibil cu trei trebuie ca suma cifrelor sale să se împartă exact la 3)
pt. b=0 ⇒ 9+0+3+0=12 (12 este divizibil cu 3)
pt. b=1 ⇒ 9+0+3+1=13 (13 nu este divizibil cu 3)
pt. b=2 ⇒ 9+0+3+2=14 (14 nu este divizibil cu 3)
pt. b=3 ⇒ 9+0+3+3=15 (15 este divizibil cu 3)
pt. b=4 ⇒ 9+0+3+4=16 (16 nu este divizibil cu 3)
pt. b=5 ⇒ 9+0+3+5=17 (17 nu este divizibil cu 3)
pt. b=6 ⇒ 9+0+3+6=18 (18 este divizibil cu 3)
pt. b=7 ⇒ 9+0+3+7=19 (19 nu este divizibil cu 3)
pt. b=8 ⇒ 9+0+3+8=20 (20 nu este divizibil cu 3)
pt. b=9 ⇒ 9+0+3+9=21 (21 este divizibil cu 3)
C={9030, 9033, 9036, 9039}
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că ați găsit conținutul oferit util și inspirațional. Dacă aveți întrebări suplimentare sau doriți asistență, vă încurajăm să ne contactați. Ne-ar face plăcere să reveniți și nu uitați să ne adăugați în lista dumneavoastră de favorite!