Explicație pas cu pas:
Salutare!
a)
[tex] \bf ( {5}^{17} \cdot{5}^{18} + {7}^{23} \div {7}^{15}) \div ( {7} \cdot {7}^{2} \cdot {7}^{5} + {5}^{50} \div {5}^{15})[/tex]
[tex]\bf ( {5}^{17 + 18} + {7}^{23 - 15}) \div ( {7}^{1 + 2 + 5} + {5}^{50 - 15})[/tex]
[tex]\bf ( {5}^{35} + {7}^{8}) \div ( {7}^{8} + {5}^{35})[/tex]
[tex] \boxed{ \bf 1}[/tex]
b)
[tex] \bf (( {2}^{10})^{8} + {6}^{5} \cdot {3}^{7} + {2}^{3^{2} }) \div (({2}^{5})^{16} + {6}^{12} \div {2}^{7} + {2}^{9} ) = [/tex]
[tex]\bf ( {2}^{10 \cdot8} + {2}^{5} \cdot{3}^{5} \cdot {3}^{7} + {2}^{9}) \div ({2}^{5 \cdot16} + {2}^{12} \cdot{3}^{12} \div {2}^{7} + {2}^{9} ) = [/tex]
[tex]\bf ( {2}^{80} + {2}^{5} \cdot{3}^{5 + 7} + {2}^{9}) \div ({2}^{80} + {2}^{12 - 7} \cdot{3}^{12} + {2}^{9} ) = [/tex]
[tex]\bf ( {2}^{80} + {2}^{5} \cdot{3}^{12} + {2}^{9}) \div ({2}^{80} + {2}^{5} \cdot{3}^{12} + {2}^{9} ) = [/tex]
[tex] \boxed{ \bf 1}[/tex]
==pav38==