Răspuns :
[tex]\sqrt{x - 1} = \sqrt{x^{2} -2x - 1} \implies x- 1 \geq 0 \text{ , } x^{2} -2x - 1 \geq 0[/tex]
[tex]\text{Din prima inegalitate avem: $x \in [1, \infty)$, iar din a doua $x \in (-\infty, 1 - \sqrt{2}]\cup[1 + \sqrt{2}, \infty)$}[/tex][tex]\text{Combinand intervalele obtinem ca $x \in [1 + \sqrt{2}, \infty)$}[/tex]
Acum putem ridica ambele părți la puterea a 2-a:
[tex]x-1 = x^{2} -2x - 1 \implies x^{2} -3x = 0 \implies x_{1} = 0, x_{2} = 3[/tex]
[tex]\text{$x_{1} = 0$ nu e solutie deoarece nu se gaseste in intervalul $[1+\sqrt{2}, \infty)$}\\\text{Deci unica solutie este $\boxed{x = 3}$}}[/tex]
[tex]S = \{3\}[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că ați găsit conținutul oferit util și inspirațional. Dacă aveți întrebări suplimentare sau doriți asistență, vă încurajăm să ne contactați. Ne-ar face plăcere să reveniți și nu uitați să ne adăugați în lista dumneavoastră de favorite!